Source code for eqc_models.solvers.eqcdirect
- from typing import Dict
- import logging
- import numpy as np
- from eqc_direct.client import EqcClient
- from eqc_models.base.base import ModelSolver, EqcModel
- log = logging.getLogger(name=__name__)
- class EqcDirectMixin:
- ip_addr = None
- port = None
- def connect(self, ip_addr : str, port : str) -> str:
- """ Explicitly set device address; if environment is configured with the connection, this call is not required """
- self.ip_addr = ip_addr
- self.port = port
- client = self.client
- return client.system_status()["status_desc"]
- @property
- def client(self):
-
- params = {}
- if self.ip_addr is not None:
- params["ip_address"] = self.ip_addr
- if self.port is not None:
- params["port"] = self.port
- return EqcClient(**params)
- [docs]
- class EqcDirectSolver(ModelSolver, EqcDirectMixin):
- [docs]
- def solve(self, model:EqcModel, relaxation_schedule:int=2, precision : float = 1.0) -> Dict:
-
- poly_coefficients, poly_indices = model.sparse
-
- if model.machine_slacks > 0:
-
- highest_idx = int(np.max(poly_indices))
-
- for i in range(model.machine_slacks):
- addtl_index = [0 for i in range(len(poly_indices[0]))]
- addtl_index[-1] = highest_idx + i + 1
- poly_indices = poly_indices.tolist() + [addtl_index]
- poly_coefficients = poly_coefficients.tolist() + [0]
-
- scval = model.sum_constraint
-
- client = self.client
- lock_id, start_ts, end_ts = client.wait_for_lock()
- log.debug("Got device lock id %s. Wait time %f", lock_id, end_ts - start_ts)
- resp = None
- try:
- log.debug("Calling device with parameters relaxation_schedule %d sum_constraint %s lock_id %s solution_precision %f",
- relaxation_schedule, scval, lock_id, precision)
- resp = client.process_job(poly_coefficients=poly_coefficients,
- poly_indices=poly_indices,
- relaxation_schedule=relaxation_schedule,
- sum_constraint = scval,
- lock_id = lock_id,
- solution_precision=precision)
- log.debug("Received response with status %s", resp["err_desc"])
- log.debug("Runtime %f resulting in energy %f", resp["runtime"], resp["energy"])
- log.debug("Distillation runtime %s resulting in energy %f", resp["distilled_runtime"], resp["distilled_energy"])
- finally:
- client.release_lock(lock_id=lock_id)
- if resp is not None:
- solution = resp["solution"]
- energy = resp["energy"]
- runtime = resp["runtime"]
- dirac3_sol = np.array(solution)
- log.debug("Energy %f Runtime %f Solution Size %i Solution Sum %f",
- energy, runtime, len(dirac3_sol), sum(dirac3_sol))
- else:
- raise RuntimeError("FAILED TO GET RESPONSE")
- return resp
- [docs]
- class Dirac3DirectSolver(EqcDirectSolver):
- """
- Naming this for when when other devices are available and have
- different requirements. For instance, Dirac-3 requires the
- summation constraint parameter, but others might not. The same
- could be true for relaxation schedule.
-
- """